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1. Introduction

In the analysis of non-linear random vibrations, the probability density function (PDF) of the
system is the quantity of main concern. Because the exact solutions can be obtained only in very
special cases for Fokker–Planck–Kolmogorov (FPK) equation or reduced FPK equation
corresponding to non-linear systems with random excitations and the special cases can rarely
be met in practice, approximate solution techniques are needed. Some approximation methods,
e.g., the equivalent linearization method [1–2], the Gaussian closure method [3], the perturbation
method [4], the Gram–Charlier series method [5–7], the equivalent non-linear system method [8,9],
the stochastic average method [10,11] and the finite element method [12] have been developed.
Recently, Er [13] proposed an exponential polynomial function method, in which the PDF of

the stationary responses of non-linear stochastic system is assumed to be an exponential function
of polynomial in state variables with unknown parameters. Special measure is taken to satisfy
FPK equation in the weak sense of integration with the assumed PDF. Evaluation of the
parameters in the approximate PDF finally results in solving simultaneous quadratic algebraic
equations. However, the simultaneous quadratic algebraic equations are difficult to solve. In this
paper, a new arithmetic is developed to evaluate the parameters in the approximate PDF.
Numerical calculation shows that the new arithmetic is suitable for strongly non-linear systems,
and in some special cases even exact solutions of the FPK equations can be obtained.

2. A new arithmetic on the exponential polynomial closure method

The PDF of the response of non-linear stochastic system was approximated by c exp½Qnðx; aÞ�;
where Qnðx; aÞ is an n-degree polynomial in state variables x1; x2;y; xnx

: Instead of solving FPK
equation directly, the approximate PDF is substituted into FPK and a function in terms of x and
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unknown parameter a is factored out. After that, make the coefficients of the residual error
vanishing, the unknown parameter a can be determined. To illustrate the new arithmetic, three
examples are presented in this section.

Example 1. Consider the scalar diffusion process X ðtÞ satisfying the stochastic differential
equation

’X ¼ 1
2
ðX � X 3 � eX 5Þ þ W ðtÞ; ð1Þ

where W ðtÞ is a Gaussian white noise with zero mean and correlation function EW ðtÞW ðt þ tÞ ¼
2pS0dðtÞ; with S0 being the spectral density of W ðtÞ: dðtÞ is a Dirac delta function and e is a
constant which represents the intensity of the non-linearity of the system.

For S0 ¼ 1=p; the stationary probability density function of the Markov process X is governed
by the following stationary FPK equation:

d

dx

1

2
ðx � x3 � ex5ÞpðxÞ

� �
�
d2pðxÞ
dx2

¼ 0: ð2Þ

The solution of Eq. (2) is

pðxÞ ¼ C exp
x2

4
�

x4

8
�

e
12

x6
� �

; ð3Þ

where C is the normalization constant.
Now the exponential polynomial function method proposed by Er [13] is used to solve Eq. (2).

It is assumed that Eq. (2) has the approximate solution of the form

pnðxÞ ¼ C exp
Xn

i¼1

aix
i

 !
; ð4Þ

where C is the normalization constant, ai; n are unknown parameters. Generally, the FPK Eq. (2)
cannot be satisfied exactly with pnðxÞ because pnðxÞ is only an approximation of pðxÞ and the
number of unknown parameters is always limited in practice. Here, we present a new arithmetic to
determine the unknown parameters ai: Substituting pnðxÞ for pðxÞ in Eq. (2) leads to the following
residual error:

d

dx

1

2
ðx � x3 � ex5ÞpnðxÞ

� �
�
d2pnðxÞ
dx2

¼ pnðxÞhnðxÞ;

where hnðxÞ is a polynomial function of the variable x: Because pnðxÞa0; generally, the only
possibility to satisfy Eq. (2) is hnðxÞ ¼ 0: However, usually hnðxÞa0; because pnðxÞ is only an
approximation of pðxÞ: In this case, we can make the coefficients Fiða1;a2;y; anÞ of xi; i ¼
0; 1;y; n � 1 in hnðxÞ vanish. This leads to

Fiða1; a2;y; anÞ ¼ 0; i ¼ 0; 1;y; n � 1: ð5Þ

This means that pnðxÞ satisfies the reduced FPK Eq. (2) in the weak sense that the coefficients of
low order power xi in hnðxÞ vanish. Eq. (5) are n quadratic non-linear equations in terms of n
undetermined parameters an: The algebraic equations can be solved with any available method to
determine the unknown parameters.
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For e ¼ 0:05; n ¼ 4; four parameters a1; a2; a3; a4 are needed, four equations are formulated as
follows:

0:5� a21 � 2a2 ¼ 0;

0:5a1 � 2a1a2 � 6a3 ¼ 0;

�1:5þ a2 � 4a22 � 6a1a3 � 12a4 ¼ 0;

ð1:5� 12a2Þa3 � a1ð0:5þ 8a4Þ ¼ 0: ð6Þ

The solution of Eq. (6) is a1 ¼ 0; a2 ¼ 1
4
; a3 ¼ 0; a4 ¼ �1

8
:

For n ¼ 6; six parameters a1; a2;y; a6 are needed, and can be solved as

a1 ¼ 0; a2 ¼ 1
4
; a3 ¼ 0; a4 ¼ �1

8
; a5 ¼ 0; a6 ¼ 1

240
:

In fact, p6ðxÞ is the exact solution pðxÞ of Eq. (2). Eq. (6) can be solved by elimination method, so
it is easy to realize in computer program. However, the quadratic algebraic equations derived by
Er [13]

�1:375� a21 � 6a1a3 � 4:75a2 � 4a
2
2 � 48a2a4 � 27a

2
3 � 46:5a4 � 240a

2
4 ¼ 0;

a1ð�1:375� 4a2 � 24a4Þ � 31:875a3 � 36a2a3 � 360a3a4 ¼ 0;

�5:875� a21 � 18a1a3 � 19:25a2 � 12a
2
2 � 240a2a4 � 135a

2
3 � 310:5a4 � 1680a

2
4 ¼ 0;

�a1ð8:625þ 12a2 þ 120a4Þ � 180a2a3 � 223:875a3 � 2520a3a4 ¼ 0;

are more difficult to solve than Eq. (6).
Numerical results show that exact solution can be obtained with Eq. (5) for any value of e in the

case when n ¼ 6; so, the new arithmetic is suitable for strongly non-linear systems. When n ¼
8; 10; the new arithmetic gives the same exact solution as in the case when n ¼ 6:
For e ¼ 0:05; the exact and approximate PDFs of X are shown in Fig. 1. From Fig. 1, it is seen

that the values of PDFs in the tails are very close to the exact solution.

Example 2. Consider the following oscillator with additive Gaussian white noise excitation:

.X þ b ’X þ X þ X 3 þ X 5 ¼ W ðtÞ; ð7Þ

where W ðtÞ is a Gaussian white noise with zero mean and correlation function EW ðtÞW ðt þ tÞ ¼
2dðtÞ; the stationary probability density function pðx1; x2Þ of the Markov vector X ¼ X1 and
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Fig. 1. The PDFs of X for Example 1. n ¼ 4; exact n ¼ 6:
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’X ¼ X2 is governed by the following FPK equation:

�x2
@pðx1; x2Þ

@x1
þ

@

@x2
½ðbx2 þ x1 þ x31 þ x51Þpðx1; x2Þ� þ

@2pðx1;x2Þ
@x22

¼ 0: ð8Þ

The stationary PDF is obtained as [14]

pðx1;x2Þ ¼ C exp �b
x22
2
þ

x21
2
þ

x41
4
þ

x61
6

� �� �
; ð9Þ

where C is the normalization constant.
Now the exponential polynomial function method is used to solve Eq. (8). It is assumed that

Eq. (8) has the approximate solution of the form

pnðx1; x2Þ ¼C expða1x1 þ a2x2 þ a3x
2
1 þ a4x1x2 þ a5x

2
2 þ?

þ anp
xn
1 þ anpþ1x

n�1
1 x2 þ?þ anpþnxn

2Þ; ð10Þ

where np ¼ nðn þ 1Þ=2: Substituting pnðx1; x2Þ for pðx1; x2Þ in Eq. (8) leads to the following residual
error:

� x2
@pnðx1; x2Þ

@x1
þ

@

@x2
½ðbx2 þ x1 þ x31 þ x51Þpnðx1;x2Þ� þ

@2pnðx1;x2Þ
@x22

¼ pnðx1; x2Þhnðx1; x2Þ;

where hnðx1; x2Þ is a polynomial function of the variables x1;x2: Making the coefficients of

x1;x2; x
2
1;x1x2;x

2
2;y;xn

1; x
n�1
1 x2;y; x1x

n�1
2

in hnðx1; x2Þ vanish leads to

Fiða1; a2;y; anpþnÞ ¼ 0; i ¼ 1; 2;y; np þ n: ð11Þ

Eq. (11) are np þ n quadratic non-linear equations in terms of np þ n undetermined parameters
a1; a2;y; anpþn: For b ¼ 1; n ¼ 4; 14 parameters a1; a2;y; a14 are needed, and can also be solved as

a1 ¼ a2 ¼ a4 ¼ a6 ¼ a7 ¼ a8 ¼ a9 ¼ a11 ¼ a12 ¼ a13 ¼ a14 ¼ 0;

a3 ¼ a5 ¼ �0:5; a10 ¼ �1:25:

For n ¼ 6; the approximate solution p6ðx1;x2Þ is the exact solution pðx1; x2Þ: Numerical results
show that exact solution can be obtained for any value of b in the case when n ¼ 6; so the new
arithmetic is suitable for a strongly damped system. When n ¼ 8; 10; the new arithmetic gives the
same exact solution as in the case when n ¼ 6 (Fig. 2).
Numerical results show that the new arithmetic could give exact PDF solutions in the case when

the PDF solution is of the type of an exponential polynomial, as shown in Examples 1 and 2.

Example 3. Consider another non-linear system with both additive and multiplicative random
excitations, as shown by the following equation in Stratonovich’s sense:

.X þ 2a½1þ W1ðtÞ� ’X þ o2½1þ W2ðtÞ�X þ b1 X 2 þ
’X2

o2

� �
’X ¼ W3ðtÞ; ð12Þ

where W1ðtÞ;W2ðtÞ;W3ðtÞ are independent Gaussian white noises in Stratonovich’s sense with
spectral densities k1; k2;k3: For o2k2 ¼ 4a2k1; the stationary probability density function pðx1; x2Þ

ARTICLE IN PRESS

H. Rong et al. / Journal of Sound and Vibration 266 (2003) 919–925922



is obtained as [15]

pðx1;x2Þ ¼ C jþ x21 þ
x22
o2

� �g�jb

exp �b x21 þ
x22
o2

� �� �
; ð13Þ

where

j ¼
k3

k2o4
; b ¼

b1
k2o2

; g ¼
2a

k2o2
þ
1

2
:

Unlike the exact PDF solutions in Examples 1 and 2, this PDF solution is not of the type of
exponential polynomial.
For a ¼ 2; b1 ¼ 4;o ¼ 1; k1 ¼ k2 ¼ k3 ¼ 2; by using the new arithmetic as shown in Example 2,

the approximate PDFs pnðx1;x2Þ can be obtained. The numerical results as shown in Fig. 3,
showed that the approximate PDFs coincide with the exact one. When n ¼ 8; 10; the new
arithmetic gives similar results as in the case when n ¼ 6:

3. Conclusions and discussions

Since the exact solution of the FPK equation is limited, approximate solution techniques are
generally needed. Approximate closure technique is a method that assumes that the approximate
PDF is a special kind of function, for example the exponential function of polynomial in state
variable as shown in this paper. Other kinds of function, such as Lagrange polynomial function
[16,17] may be used. In this paper, the approximate PDF is formed to be an exponential function
of a polynomial in the state variables. The FPK equation is solved with a special technique such
that the FPK equation is satisfied in the weak sense that the coefficients of the low order power of
the state variables in residual error vanish. The present method is valid not only for single degree
of freedom polynomial random systems, but also for multiple degree of freedom polynomial
random systems. This method may be extended to general type of non-linearity, such as, for
instance, sin x: One may expand sin x in Taylor series, then the new arithmetic can go on.
However, the choice of n depends on the numerical calculation experience. One may choose n in

such a way, when different n gives similar results, such approximation result may be taken as exact
one. Further efforts should be made for the problems such that if the approximate PDF pn

ARTICLE IN PRESS

pn  (x1, x2)
pn  (x1, x2) pn  (x1, x2)

-4

-2

0

2

4

0
0.05
0.1

0.15
0.2

-4
-2

0
2

4
-4

-2

0

2

4

0
0.05
0.1

0.15
0.2

-4
-2

0
2

4
-4

-2

0

2

4

0
0.05
0.1

0.15
0.2

-4
-2

0
2

4
x1 x1 x1

x2 x2 x2

(a) (b) (c)

Fig. 2. The PDFs for Example 2. (a) n ¼ 2; (b) n ¼ 4; (c) exact. n ¼ 6:
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converges to the exact PDF p as n-N; or if gives n; how to determine the unknown parameters
so that the approximate solution coincides with the exact one.
The new arithmetic proposed in this paper is an application of the exponential polynomial

function method proposed by Er [13]. Evaluating the parameters using either the new
approximation closure method or the exponential polynomial function method results in solving
similar simultaneous quadratic algebraic equations. However, the quadratic algebraic equations
derived by the new arithmetic are simpler than that by Er [13], and can be solved by the
elimination method, so it is easy to realize in computer program.
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